
IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 2, Issue 12, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.21210 61

Perfect-Xen: A Framework for Performance

Counter Virtualization

Asst. Prof. Poonam Gholap
1
, Asst. Prof. Rakhee Kundu

2
, Asst. Prof. Snehal Mane

3

Computer Engineering, VESIT, Affiliated to Mumbai University, India
1, 2, 3

Abstract: Virtualization is a powerful technique used for variety of application domains, including merging cloud

environments that provide access to virtual machines as a service. This paper discusses the challenges of performance

monitoring inherent to virtualized environments and introduces a technique to virtualize access to low-level

performance counters on a per-thread basis. The technique was implemented in perfctr-xen, a framework for the Xen

hypervisor that provides an infrastructure for higher-level profilers. This framework supports both accumulative event

counts and interrupt-driven event sampling .Paper presents experimental results based on micro benchmarks and SPEC

CPU2006 macro benchmarks that show the accuracy and usability of the obtained measurements when compared to

native execution.

Keywords: Virtualization, Framework, Hypervisor, Virtual Machine.

I. INTRODUCTION

Virtualization allows multiple instances of an operating

system to run on a single computer. Virtualization is the

creation of a virtual (rather than actual) version of

something, such as an operating system, a server, a storage

device or network resources. We probably know a little

about virtualization if we have ever divided our hard drive

into different partitions. a partition is the logical division

of a hard disk drive to create, in effect, two separate hard

drives. Operating system virtualization is the use of

software to allow a piece of hardware to run multiple

operating system images at the same time. The technology

got its start on mainframes decades ago, allowing

administrators to avoid wasting expensive processing

power.

APPLICATIONS OF VIRTUALIZATION:

DESKTOP:

Desktop virtualization is the concept of separating the

logical desktop from the physical machine. One form of

desktop virtualization, virtual desktop infrastructure

(VDI), can be thought as a more advanced form of

hardware virtualization. Rather than interacting with a host

computer directly via a keyboard, mouse, and monitor, the

user interacts with the host computer using another

desktop computer or a mobile device by means of a

network connection, such as a LAN, WLAN or even the

Internet. In addition, the host computer in this scenario

becomes a server computer capable of hosting multiple

virtual machines at the same time for multiple users. [2]

OPERATING SYSTEM-LEVEL VIRTUALIZATION:

Operating system-level virtualization is a server

virtualization method where the kernel of an operating

system allows for multiple isolated user-space instances,

instead of just one. Such instances (often called containers,

VEs, VPSs or jails) may look and feel like a real server,

from the point of view of its owner.

Network virtualization:

Network virtualization is the process of combining

hardware and software network resources and network

functionality into a single, software-based administrative

entity, a virtual network. Network virtualization involves

platform virtualization, often combined with resource

virtualization.

 ADVANTAGES VIRTUALIZATION:

 Server consolidation

 Reduced power and cooling

 Green computing

 Ease of deployment and administration

 High availability and disaster recovery

POPULAR VIRTUALIZATION PRODUCTS INCLUDE ALSO

KNOWN AS HYPERVISOR: VMWARE

 Microsoft Hyper-V

 Virtual Iron

 Xen

PERFCTR-XEN SUPPORT FOLLOWING TYPE OF

VIRTUALIZATION MODES:[4]

Fig: 1 VMM Arrangements

1. FULL VIRTUALIZATION:

In computer science, full virtualization is a virtualization

technique used to provide a certain kind of virtual machine

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 2, Issue 12, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.21210 62

environment, namely, one that is a complete simulation of

the underlying hardware. Full virtualization requires that

every salient feature of the hardware be reflected into one

of several virtual machines – including the full instruction

set, input/output operations, interrupts, memory access,

and whatever other elements are used by the software that

runs on the bare machine, and that is intended to run in a

virtual machine. In such an environment, any software

capable of execution on the raw hardware can be run in the

virtual machine and, in particular, any operating systems.

2. PARAVIRTUALIZATION:

In computing, para virtualization is a virtualization

technique that presents a software interface to virtual

machines that is similar but not identical to that of the

underlying hardware.

The intent of the modified interface is to reduce the

portion of the guest's execution time spent performing

operations which are substantially more difficult to run in

a virtual environment compared to a non-virtualized

environment. The para virtualization provides specially

defined 'hooks' to allow the guest(s) and host to request

and acknowledge these tasks, which would otherwise be

executed in the virtual domain (where execution

performance is worse). A successful para virtualized

platform may allow the virtual machine monitor (VMM)

to be simpler (by relocating execution of critical tasks

from the virtual domain to the host domain), and/or reduce

the overall performance degradation of machine-execution

inside the virtual-guest.

3. HARDWARE-ASSISTED VIRTUALIZATION

The hardware-assisted virtualization is orthogonal to para

or full virtualization, and it can be used for the both.

Advantages of The hardware-assisted virtualization

provide virtual machine monitors (VMM) with simpler

and robust implementation. Full-virtualization can be

implemented by software only, as we see such products

such as VMware as well as Virtual PC and Virtual Server

from Microsoft today. However, hardware-assisted

virtualization such as IntelR Virtualization Technology

(simply IntelR VT hereafter) can improve the robustness,

and possibly performance. Disadvantages of Obviously

hardware-assisted virtualization requires a

system with the feature, but it is sensible to assume that

hardware-assisted virtualization is available on almost all

new x86-64-based systems.

4. HYBRID-VIRTUALIZATION:

Hybrid-virtualization that we propose is technically para-

virtualization for hardware-assisted virtualization.

However, we use this terminology to avoid any confusion

caused by the connotation from software-only para-

virtualization. And the critical difference is that hybrid-

virtualization is simply a set of optimization techniques for

hardware-assisted full-virtualization.

II. PROBLEM DEFINITION AND METHODOLOGY

ADAPTED

This paper shows comparisons of two Virtualizing

hardware event counters perfctr and perfctr xen each is

described in detail as follows:

PERFCTR

We chose perfctr because it is widely used and provides

the foundation for higher-level libraries and frameworks

such as PAPI, HPCToolkit, or PerfExplorer, as shown in

Figure 3. It is efficient, lightweight and allows direct

access to performance counters in user mode. Perfctr

supports a wide range of x86 implementations spanning

multiple generations and different vendors, whose

hardware event counter implementation can differ

significantly. In addition, perfctr works on non-x86

platforms such as PowerPC and ARM and can easily be

integrated in any Linux distribution. Perfctr consists of a

kernel driver and a user-level library. The kernel driver

maintains performance counter-related per-thread data

structures, updates them on each context switch, and

makes them available to the user-level library via a read-

only mapping. Besides miscellaneous architecture-specific

information, this perthread data structure contains the

following information:

• Control State. Information about which PMU data

registers a thread is actively using, which events these

registers count, and to which physical register address they

are mapped. Similar information is kept with respect to the

use of the time-stamp counter, which is also virtualized.

Counter State. For each PMU data register, as well as the

TSC register, two values are kept: Sumthread, which

reflects the thread’s accumulated logical event count up to

including the last suspension point; and Startthread, which

reflects the sampled value of the counter at the last

resumption point. Perfctr supports two types of counters:

a-mode and i-mode counters. A-mode counters are used by

threads to measure the number of events occurring in some

region of a program. Before coming to understand how

perfctr works we need to understand what it consist of

MSRs(machine Specific Registers, First, PMU

(Performance Monitoring Unit) configuration registers

(e.g., event selectors) need to be re-programmed to reflect

the desired event configuration of the thread to be

resumed. Second, if the performance counter register

contains the logical value of the thread to be resumed, it

must be restored (and the value of the outgoing thread

must be saved). Otherwise, its value must be sampled and

recorded in the corresponding data structure for the thread

or domain. When a thread wants to access the logical

value of a counter at time t, a user library function issues a

RDTSC or RDPMC instruction to obtain the register’s

physical value Phys(t) and computes the logical value

Logthread(t) as

Logthread(t) = Sumthread + (Phys(t) − Startthread) (1)

On each context switch, the perfctr kernel driver updates

the accumulated value of the outgoing thread as

 Sumthread ←Sumthread+(Phys−Startthread)

 to account for the events during the last scheduling

period. In addition, the Startthread value

of the thread to be resumed is reset as Startthread ← Phys.

Note that the actual physical register value is not changed

on a context switch for a-mode counters. I-mode counters,

which are used for sampling, trigger interrupts after a

certain number of events has occurred, which represents

the sampling period. Since the value at which an overflow

interrupt is triggered is fixed at 0 and cannot be

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 2, Issue 12, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.21210 63

programmed, the physical register must be set to a small

negative value whose absolute value represents the desired

length of the sampling period. I-mode counters are treated

differently during a context switch: their physical value is

saved on suspend and restored on resume. The Sumthread

field maintains the counter’s accumulated logical value as

for amode counters. The Startthread field is used to record

the physical value when a thread is suspended.

Consequently, the logical value of an i-mode counter can

also be obtained using equation (1).

When an overflow occurs, perfctr handles this interrupt,

identifies the register(s) that have overflowed and updates

Sumthread, then disables further event counting for these

registers Before coming to understand how perfctr works

we need to understand what it consist of MSRs (machine

Specific Registers, First, PMU (Performance Monitoring

Unit) configuration registers (e.g., event selectors) need to

be re-programmed to reflect the desired event

configuration of the thread to be resumed. Second, if the

performance counter register contains the logical value of

the thread to be resumed, it must be restored (and the

value of the outgoing thread must be saved).Otherwise, its

value must be sampled and recorded in the corresponding

data structure for the thread or domain.

Fig 2: context switching in virtualized environment

States Sumthread=

Sumthread+
(Phys(t)

−Start thread)

Startthread

=Phys
Phys

(t)

Logthread

=Sum
thread+

(Phys(t)

− Start
thread)

Thread
start

0 10

Thread

suspend
2 12 0+(12-10)=2

Thread

resume
2 14

Thread
suspend

4 16 2+(16-14)=4

Table1: A- mode counter (native)

A-MODE COUNTERS

● Log thread(t) = Sum thread + (Phys(t) − Start thread)

● Sum thread =Sum thread+(Phys−Start thread)

● Start thread = Phys

 Sum

thread

Start thread=

Phys (when

thread is

suspended)

Log thread=

Sum thread +

Phys(t)-Start

thread

T0 0 -5 0+(-5)-(-0)=5

 5(store) -5(store)

T1 5(restore) -5(restore)

T2 5 -5 5+((-3)-(-

5))=7

 -3(-5+2)

Table2: I-mode counter (native)

I-mode counters

● Phy reg loaded with negative value , Saving and storing

at each switch

● Log thread=Sum thread =Sum thread+(Phys−Start

thread)

● Start thread=Phys when thread is suspended

Disadvantage of perfctr :

We first considered having the hypervisor update each

thread’s counter state directly on the guest kernel’s behalf.

This approaches the advantage that no changes to the

perfctr user library are required. However, it would create

undesirable coupling between the hypervisor and the guest

kernel implementations, because the hypervisor would

need to traverse guest kernel data structures.

THE PERFCTR-XEN FRAMEWORK
 Perfctr-xen includes a hypervisor driver, a guest kernel

driver, and a modified user-level library. perfctr-xen

supports both paravirtualized mode as well as hardware

virtualization mode due to perfctr disadvantages, we

decided to split the control and counter state in two parts.

At the guest kernel level, a per-thread data structure is

maintained. At the hypervisor level, a per-VCPU data

structure is maintained for each virtual CPU that is

assigned to a guest domain. The hypervisor provides read-

only access to this data structure to the guest kernel, who

in turn maps it into the address space of each thread using

performance counters.

The per-VCPU data structure is modeled after the per-

thread data structure used in the native version of perfctr

For each PMU data register, as well as forthe TSC

register, the hypervisor maintains two values per VCPU:

Startvcpu and Sumvcpu.

Startvcpu represents the sampled value of the counter at

the most recent resumption point of the domain or thread

(whichever happened last). If the hypervisor resumes a

domain,it directly updates Startvcpu after sampling the

counter. If the guest kernel resumes a thread, it requests

via a hypercall that the hypervisor record the sampled

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 2, Issue 12, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.21210 64

value in Startvcpu. The same hypercall is also used to

activate this thread’s counter-related control state.

The field Sumvcpu represents the cumulative number of

events incurred by this domain since the last intra-domain

thread resumption point until the most recent domain

suspension point. It is set to zero on each intra-domain

switch during the hypercall that notifies the hypervisor

that the guest kernel resumed a thread. On each inter-

domain context switch, the perfctr-xen hypervisor driver

updates the accumulated value of the outgoing VCPU as

Sumvcpu ←Sumvcpu+(Phys−Startvcpu) (1)

to account for the events incurredsince the last intra- or

inter-domain resumption point.The perfctr-xen guest

kernel driver maintains the value Sumthread for each

thread as in the native case, which represents the

cumulative number of events up to the last thread

suspension point. A counter’s logical value at time t is

computed as

Logthread(t) = Sumthread + (Phys_(t) − Start_thread) (2)

Phys_(t) represents the adjusted physical value that

accounts for possible VCPU preemption, which is

computed as

Phys_(t) = Sumvcpu + (Phys(t) − Startvcpu) (3)

 Thus, the logical value represents the sum of the

cumulative number of events until the last thread

suspension point, plus the number of events encountered

from there until the last domain resumption point while the

domain was active, plus the events encountered since then

until t, reduced by an adjusted start value Start_thread. The

adjusted thread start value Start_thread compensates for

the requirement that each intra-domain context switch

includes a hypercall. Since this hyper call is introduced by

our framework, we wish to exclude any events occurring

during its execution. Right before resuming a guest thread,

the guest kernel driver computes

Start_thread = Phys_(tr) (after returning from the hypercall

at time tr)

Start_ thread = Sumvcpu + (Phys(tr) − Startvcpu) (4)

This adjustment excludes any events incurred between

when the hypervisor sampled the counter during the

hypercall and tr.

Fig:3 example scenario for virtualized perfctr counter

(perfctr-xen)

The inclusion of the term Sumvcpu ensures that all such

events are excluded, even if the domain was suspended

and resumed during the hypercall by the preemptive

scheduler.

● Sum vcpu =Sum vcpu + (Phys−Start vcpu)

● Log thread(t) = Sum thread + (Phys*(t) − Start*thread)

● Phys*(t) = Sum vcpu + (Phys(t) − Start vcpu)

● Start*thread = Phys*(tr) after returning from the

hypercall at time tr

● Start*thread = Sum vcpu + (Phys(tr) − Start vcpu)

SPEC CPU2006 BENCHMARKS

We used the SPEC CPU2006 benchmarks as

macrobenchmarks to show the correctness of our

implementation and provide error esti- mates for CPU and

memory bounded workloads. Native mode execution is

again used as reference point. Since Dom0 is a

paravirtualized domain in Xen, we used the Dom1 and

Dom2 domains for tests that include fully-virtualized

domains. (To exclude any possible effect of Dom0, we

pinned it to a dedicated core.) We considered 5scenarios:

(1) Native mode execution. (2) Fully-virtualized domains

Dom1 and Dom2, each running on a dedicated core (DC).

(3) Fully-virtualized domains Dom1 and Dom2 running on

the same core (SC). (4) Paravirtualized domains Dom0

and Dom1, each running on a dedicated core (DC). (5)

Paravirtualized domains Dom0 and Dom1 running on the

same core (SC). The official SPEC distribution contains a

large set of different benchmarks. We ran all of them using

the ’train’ problem size and recorded the total number of

events counted during their execution. Since some

benchmarks were executed under different data sets, we

calculated the cumulative event counter values for all data

sets.

We present results for a subset of benchmarks only,

choosing those for which both a non-negligible number of

events was counted and for which the difference between

the scenarios was largest; these represent the relative

weakest performance of our framework. In Figure 5, the

results for the cycle counts reported by the virtualized TSC

are shown. If the benchmarks execution were unaffected

by virtualization, and if our framework achieved the same

accuracy as perfctr running natively, we would expect to

obtain the same results for all test scenarios for a given

benchmark. This is true for most benchmarks, although 3

benchmarks (mcf, astar, and lbm) show significant

deviations for the fully virtualized configuration.

When counting the number of instructions retired (Figure

7), we did not observe any significant differences. Figures

6 and 8 display the number of L2 cache references and

misses, respectively. Since these events are more strongly

influencedby environmental factors inherent to the

virtualized environment, they show slightly larger

deviations, particularly for the number of cache misses.

For example, libquantum shows a significant drop in the

number of cache misses observed, although the number of

cache references is roughly the same. These effect warrant

further investigation to ascertain if they indeed reflect

environmental circumstances or are caused by inadvertent

interactions with the measurement framework.

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 2, Issue 12, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.21210 65

Table3: example for A-mode (perfctr-xen)

Table4: example for I-mode (perfctr-xen)

SPEC CPU2006 BENCHMARKS

Fig5. SPEC CPU2006, Time Stampcounter

Fig 6. SPEC CPU2006, L2 Cache

Time Phys

(t)

Start

vcpu

=Phys

Sumvcpu=0

(intradomain)

Sumvcpu=

Sumvcpu+

(Phys-Startvcpu)

(interdomain)

Phys*(t)=

Sumvcpu+

(Phys(t)-

startvcpu)

Phys*(tr)=

Start*thread=

Sumvcpu+Phys

(tr)-Startvcpu

Logthread(t)=

Sumthread+

(Phys*(t)-

start*(t))

Sumthread

= Log

thread

T0 10 0 0 10+(10

-0)=20

10+0-0=10 0+(20-10)=10 0

 0+10-0=10 10

T1 13 0 (intradomain

switch)

 0+(14-13)=1

T2 20 0+(20-14)=6

(interdomain

switch)

6+(20-13)=13 6+(14-13)=7 10+(13-7)=16 16

T3 22 6

T4 30 6+(30-22)=14 14+(3022)=22 14+(22-22)=14 16+(22-14)=24 24

Time Startvcpu=Phys(intradomain)

Startvcpu=Startthread(interdomain)

Sumthread=

Sumvcpu

Startthread=Startvcpu

(intradomain)Startthread=

Negative sample

period(interdomain)

Sumvcpu=Sumvcpu

+ (Phys-Startthread)

T0 -10 0 -5(saved)(step4) 0 (step1)

 -5(phys as intradomain)(stp2) 5(saved)

(Step3)

 0+(-5-(-10))=5

T1 -5(restored) 5(restored)

T2 -5 5 -5 5+(-2-(-5))=8

 -2(-5+3) 2(saved) -2(saved)

T3 -2(restored) 8 (restored)

 8 -2

T4 -2 8 -2=(-5-(-3))

 -2 (phys as interdomain)

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 2, Issue 12, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.21210 66

Fig7. SPEC CPU2006, Instructions Retired

Fig8. SPEC CPU2006, L2 Cache Misses

III. CONCLUSION

This paper presented perfctr-xen, a novel performance

counter framework for the Xen hypervisor which we have

developed. perfctr-xen extends the existing perfctr

framework so it can be used in virtual machine

environments running under the Xen hypervisor. perfctr-

xen supports both paravirtualized guest and guests using

hardware-based virtualization. It provides a hybrid mode

in which paravirtualization techniques are applied to

hardware-assisted guest virtual machine. The technical

contributions of this paper are the following: (1)

application of an offsetting technique that allows direct

access to logical per-thread counter values from user mode

while avoiding the costs ssociated with saving and

restoring physical PMU data registers; (2) the optimization

of guest and hypervisor communication to minimize and

amortize the costs associated with their coordination,

while avoiding the costs of trapping and emulating

counter-related instructions; (3) a technique for increasing

the accuracy of performance monitoring by correcting for

monitoring overhead. Perfctr-xen enables the use of

higher-level profiling frameworks such as PAPI or

HPCToolkit in those environments, without requiring

changes to them. As such, it addresses an urgent need in

emerging IaaS cloud environments.

REFERENCES

[1] Xen at Wikipedia http://en.wikipedia.org/wiki/Xen

[2] Virtualization at Wikipedia-

http://en.wikipedia.org/wiki/Virtualization
[3] Performance Monitor Counters- http://technet.microsoft.com/en-

us/library/cc768048.aspx

[4] Hybrid-Virtualization—Enhanced Virtualization for Linux Intel
Open Source Technology Center

[5] Performance Profiling in a Virtualized Environment.
http://static.usenix.org/event/hotcloud10/tech/full_papers/Du.pdf

[6] Xen in detail Xen http://www.xen.org/

[7] http://www.linuxjournal.com/article/9764
[8] What_is_Xen. http://wiki.xen.org/wiki/Xen_Overview#

[9] http://nehttp://technet.microsoft.com/en-us/library

	Fig: 1 VMM Arrangements
	Disadvantage of perfctr :

